
J. Parallel Distrib. Comput. 73 (2013) 62–73
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Parallel differential evolution with self-adapting control parameters
and generalized opposition-based learning for solving
high-dimensional optimization problems
Hui Wang a,∗, Shahryar Rahnamayan b, Zhijian Wu c

a School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, PR China
b Faculty of Engineering and Applied Science, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada
c State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, PR China

a r t i c l e i n f o

Article history:
Received 14 April 2011
Received in revised form
21 November 2011
Accepted 27 February 2012
Available online 4 March 2012

Keywords:
Differential evolution (DE)
Generalized opposition-based learning
Graphics processing units (GPU)
High-dimensional global optimization

a b s t r a c t

Solving high-dimensional global optimization problems is a time-consuming task because of the high
complexity of the problems. To reduce the computational time for high-dimensional problems, this paper
presents a parallel differential evolution (DE) based on Graphics Processing Units (GPUs). The proposed
approach is called GOjDE, which employs self-adapting control parameters and generalized opposition-
based learning (GOBL). The adapting parameters strategy is helpful to avoid manually adjusting the
control parameters, and GOBL is beneficial for improving the quality of candidate solutions. Simulation
experiments are conducted on a set of recently proposed high-dimensional benchmark problems with
dimensions of 100, 200, 500 and 1,000. Simulation results demonstrate that GjODE is better than, or at
least comparable to, six other algorithms, and employing GPU can effectively reduce computational time.
The obtained maximum speedup is up to 75.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Many real world problems can be formulated as optimization
problems. As their complexity increases, traditional optimization
algorithms fail to converge at acceptable rates, if at all, and effective
algorithms are required. An unconstrained minimization problem
can be presented as follows:

MIN f (x)

where x = [x1, x2, . . . , xD] and D indicates the dimension of the
problem.

In the past decades, different kinds of nature-inspired optimiza-
tion algorithms have been designed and applied to solve challeng-
ing optimization problems, e.g., Simulated Annealing (SA) [21],
Evolutionary Algorithms (EAs) [3], Differential Evolution (DE) [34],
Particle Swarm Optimization (PSO) [20], Ant Colony Optimization
(ACO) [9], Estimation of Distribution Algorithms (EDA) [22], etc.
Although these algorithms have shown promising performance in
solving lower dimensional problems (D < 100), many of them suf-
fer from the curse of dimensionality [5], which implies that their
performance deteriorates as the dimensionality of the search space
increases.

∗ Corresponding author.
E-mail addresses: wanghui_cug@yahoo.com.cn (H. Wang),

shahryar.rahnamayan@uoit.ca (S. Rahnamayan), zhijianwu@whu.edu.cn (Z. Wu).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.02.019
Recently, some excellent evolutionary approaches have been
proposed to solve high-dimensional global optimization problems
accurately [7,15,43,50,53]. Unfortunately, they are very time-
consuming because of the high complexity of the problems. For
instance, it cost about 104 h with Java version to complete the
whole experiments of CEC-2010 special session and competition
on large-scale global optimization (it was tested in a single thread
on an Intel Core 2 Quad CPU Q6600 with 2.40 GHz in Matlab for
Linux) [35]. Moreover, most of the mentioned algorithms have
a time complexity of O(D2). It implies that the running time
increases dramatically with the problem’s dimensions.

To reduce the computational time for high-dimensional prob-
lems, this paper presents a parallel DE algorithm based on GPU
(GOjDE), which is an enhanced version of generalized opposition-
based differential evolution (GODE) [43]. In GOjDE, a self-adapting
parameter tuning strategy is utilized to maximize performance
of the algorithm. Moreover, GOjDE is run on multiprocessors
of GPU in a parallel manner. That is helpful to accelerate the
algorithm.

The rest of the paper is organized as follows. Section 2 presents
a short review of DE and GPU computing. Section 3 provides a
review of related works on high-dimensional global optimization.
The proposed GOjDE is described in Section 4. Section 5 explains
implementation of GOjDE on GPU. In Section 6, the experimental
results and analysis are provided. Finally, the work is concluded in
Section 7.

http://dx.doi.org/10.1016/j.jpdc.2012.02.019
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2012.02.019&domain=pdf
mailto:wanghui_cug@yahoo.com.cn
mailto:shahryar.rahnamayan@uoit.ca
mailto:zhijianwu@whu.edu.cn
http://dx.doi.org/10.1016/j.jpdc.2012.02.019


H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73 63
2. Background review

2.1. Differential evolution

Differential Evolution (DE), proposed by Storn and Price [34], is
an effective, robust, and simple global optimization algorithm. Ac-
cording to frequently reported experimental studies, DE has shown
better performance than many other evolutionary algorithms
(EAs) in terms of convergence speed and robustness over compre-
hensive benchmark functions and real-world problems [27,39,41].

There are several variants of DE [34]. According to suggestions
in [16], the rand/1/exp strategy shows a better performance to
solve large-scale problems. Yang et al. [50] pointed out that the
used benchmark functions are not really large-scale and most of
them can be easily optimized dimension by dimension. For the
exponential crossover, even if we use a large CR, the mutated
dimensions are still small.

Let us assume thatXi(t)(i = 1, 2, . . . ,Np) is the ith individual in
population P(t), whereNp is the population size, t is the generation
number, and P(t) is the population in the tth generation. Themain
idea of DE is to generate trial vectors. Mutation and crossover are
used to produce new trial vectors, and selection determines which
of the vectors will be successfully selected for the next generation.

Mutation—For each vector Xi(t) in Generation t , amutant vector
V is calculated by

Vi(t) = Xi1(t) + F

Xi2(t) − Xi3(t)


, i ≠ i1 ≠ i2 ≠ i3, (1)

where i = 1, 2, . . . ,Np and i1, i2, and i3 are mutually different
random integer indices in [1,Np]. The population size Np should
satisfy Np ≥ 4 because i, i1, i2, and i3 are different. F ∈ [0, 2] is a
real number that controls the amplification of the difference vector
(Xi2(t) − Xi3(t)).

Crossover—Like genetic algorithms, DE also employs a cross-
over operator to build trial vectors (Ui(t) = {Ui,1(t),Ui,2(t), . . . ,
Ui,D(t)}) by recombining of two different vectors.

Ui,j(t) =


Vi,j(t), if randj(0, 1) ≤ CR ∨ j = l
Xi,j(t), otherwise , (2)

where CR ∈ (0, 1) is the predefined crossover probability, and
randj(0, 1) is a randomnumberwithin (0, 1) for the jth dimension,
and l ∈ {1, 2, . . . ,D} is a random parameter index.

Selection—A greedy selection mechanism is used as follows:

Xi(t) =


Ui(t), if f (Ui(t)) ≤ f (Xi(t))
Xi(t), otherwise . (3)

Without loss of generality, this paper only considers minimiza-
tion problems. If, and only if, the trial vector Ui(t) is better than
Xi(t), then Xi(t) is set to Ui(t); otherwise, the Xi(t) remains un-
changed.

2.2. Computing based on GPU

GPU computing refers to the computer programming paradigm
of using a GPU to perform parallel computations using a SIMD
(Single Instruction Multiple Data) parallelization paradigm. Com-
pute Unified Device Architecture (CUDA) is a general purpose par-
allel computing architecture developed by NVIDIA in 2006 [26].
CUDA allows the programmer to efficiently program in a manner
similar to C language but to run onNVIDIA graphics cards. In CUDA,
parallelized programs are run on a kernel of code. The code on
the kernel is run through several thousands of treads. Individual
threads run all of the code on the kernel, butwith different data [1].

CUDA programming model consists of four parts: Host and
Device, Kernels, Thread Hierarchy, and Memory Hierarchy.
Fig. 1. The structure of grid, block and thread.

• Host and Device: CUDA’s programming model assumes that
CPU andGPU are regarded as a host and a coprocessor or device,
respectively. In this model, CPU and GPU work collaboratively.
CPU focuses on dealing with serial computation, and GPU
concentrates on parallel computing.

• Kernels: CUDA allows programmers to define functions, called
kernels, that, when called, are executedN times in parallel byN
different CUDA threads.

• Thread Hierarchy: The kernels are organized as a grid. Each
grid consists of several blocks, and each block contains several
threads. Fig. 1 shows the structure of grid, block, and thread.

• Memory Hierarchy: There are four distinct memory, global
memory, shared memory, local memory, and register.

The nVidia GeForce GTX 285 GPU hardware used in this paper
has 30 multiprocessors and 240 cores. All threads are organized
into blocks. Each block has a maximum of 512 threads, 16 kB
shared memory and 16 kB registers. The total amount of constant
memory is 64 kB. The threads in the same block can communicate
through fast shared memory. Between the blocks, communication
is possible only with slower global device memory [55].

Since the development of GPU, it has been applied in various
areas for general-purpose computing. Wong [48] reported a par-
allel hybrid GA (HGA) on GPU. HGA extends the classical GA by
incorporating the Cauchy mutation operator from evolutionary
programming. In the parallel HGA, all steps except the random
number generation procedure are performed in GPU. The obtained
speedup increases with the growth of population size. The max-
imal speedup is up to 4.24 when the population size is set to
6400. Recently, Wong [47] implemented multi-objective evolu-
tionary algorithms (MOEA) on GPU, where all steps except the
non-dominated selection procedure are performed on GPU. Exper-
imental results show that the speedups of parallel MOEA range
from 5.62 to 10.75. It suggests that the proposed approach will be
very useful for solving difficult multi-objective optimization prob-
lems which require huge population sizes.

Robilliard et al. [32] implemented Genetic Programming (GP)
on GPU. The achieved speedup depends on the problem, notably
on the presence of diverging operator and the number of fitness
cases. The use of GPU fast memory can yield improvement up to
factor 3 speedup. Banzhaf et al. [4] explained the general approach
to use a GPU for GP and presented an overview of currently usable
software systems. It pointed out that it would be helpful to identify
categories of fitness functions thatmight andmight not be suitable
for implementation on GPUs. Zhou et al. [54] discussed the poten-
tial of GPU in high-dimensional optimization problems. Numerical
examples compare the performance of CPU and GPU implemen-
tations of three classical minorization–maximization (MM) algo-
rithm, nonnegativematrix factorization, PET image reconstruction,
andmultidimensional scaling. The attained speedupwas up to 100.

Administrator
Highlight



64 H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73
Hu et al. [19] presented an analysis of parallel evolutionary al-
gorithm with variable population size. The performance of the
proposed algorithm is compared to conventional fixed-population-
size genetic algorithms. The results show that variable population
size can effectively improve performance.

Veronese and Krohling [40] proposed a DE algorithm based on
GPU, in which only the fitness evaluation function is implemented
in parallel, while the rest operations are sequential. Zhu [55]
presented a novel DE (DE-PS) with local search and GPU which
is run on single instruction-multiple thread (SIMD). The reported
results indicate the GPU-accelerated SIMD-DE-PSmethod is orders
of magnitude faster than the corresponding CPU implementation.
In [55], simulation experiments are conducted on a set of function
optimization problems with D ≤ 105.

3. Overview of high-dimensional global optimization

In the past several years, the research on solving large-scale
global optimization problems has attracted much attention. Some
excellent works have been proposed. In this section, a brief
overview of these approaches is presented.

Yang et al. [49] proposed a multilevel cooperative co-evolu-
tion algorithm based on self-adaptive neighborhood search DE
(SaNSDE) to solve large scale problems. Hsieh et al. [18] presented
an efficient population utilization strategy for PSO (EPUS-PSO) to
manage the population size. Brest et al. [8] introduced a population
size reduction mechanism into self-adaptive DE (jDEdynNP-F),
where the population size decreases during the evolutionary
process. Recently, Brest and Maučec proposed another version of
jDEdynNP-F by employing three new mutation schemes [7].

Tseng and Chen [38] presented multiple trajectory search
(MTS) by using multiple agents to search the solution space
concurrently. Zhao et al. [52] used dynamic multi-swarm PSO
with local search (DMS-PSO) for large scale problems. Rahnamayan
and Wang [31] presented an experimental study of opposition-
based DE (ODE) [30] on large scale problems. The reported
results show that ODE significantly improves the performance of
standard DE. Molina et al. [24] presented a memetic algorithm by
employing MTS and local search chains to deal with large scale
problems. Garcá-Martńez and Lozano [14] proposed a continuous
variable neighborhood search algorithm based on evolutionary
metaheuristic components. Muelas et al. [25] used a local search
mechanism to improve the solutions obtained by DE. Duarte and
Marti [10] presented an adaptive memory procedure based on
scatter search and Tabu search to guide search in solving large
scale problems. Wang et al. [43,44] used an enhanced ODE based
on generalized opposition-based learning (GODE) to solve scalable
benchmark functions.

Martinez et al. [15] introduced two mechanisms for improving
the performance of DE on large-scale problems. The first one
is role differentiation mechanism which defines the attributes
for those vectors which are selected for each role. The second
one is malleable mating which allows placing vectors to adapt
their mating trends to ensure some similarity relations with
the leading and correcting vectors. Yang et al. [50] proposed a
generalized adaptive DE for large-scale optimization,which adopts
the advantages of existing parameter adaptation schemes in DE.
Zhao et al. [53] combined self-adaptive DE and multiple trajectory
search (MTS) for large-scale optimization, which incorporates
DE/current-to-pbest [51] mutation strategy and hybridized with
modified MTS.

Although the above mentioned algorithms achieve promising
solutions in solving high-dimensional problems, they suffer from
the same problem which the computational time significantly
increases with the dimensions. In the current direction, this
paper presents a new GOjDE algorithm based on GPU to reduce
computational time using the parallelization.
4. DE with self-adapting control parameters and generalized
opposition-based learning (GOjDE)

4.1. Generalized opposition-based learning

Opposition-based Learning (OBL) [37] is a new concept in
computational intelligence, and has been proven to be an effective
concept to enhance various optimization approaches [28–30,42].
When evaluating a solution x to a given problem, simultaneously
computing its opposite solution will provide another chance for
finding a candidate solution closer to the global optimum. Based
on the concept of OBL, we propose a generalized OBL (GOBL) as
follows [43–45]. Let x be a current solution, x ∈ [a, b], and its
opposite solution x∗ is defined by:

x∗
= k(a + b) − x (4)

where k is a random number within [0, 1].
By staying within variables’ interval static boundaries, we

would jump outside of the already shrunken search space and
the knowledge of the current converged search space would be
lost. Hence, we calculate opposite particles by using dynamically
updated interval boundaries [aj(t), bj(t)] as follows [43].

X∗

i,j = k[aj(t) + bj(t)] − Xi,j, (5)

aj(t) = min(Xi,j(t)), bj(t) = max(Xi,j(t)), (6)

X∗

i,j = rand(aj(t), bj(t)), If X∗

i,j⟨Xmin ∥ X∗

i,j⟩Xmax,

i = 1, 2, . . . ,Np, j = 1, 2, . . . ,D, k = rand(0, 1), (7)

where Xi,j is the jth element of vector of the ith candidate in the
population, X∗

i,j is the opposite candidate of Xi,j, aj(t) and bj(t)
are the minimum and maximum values of the jth dimension in
current search space, respectively, rand(aj(t), bj(t)) is a random
number within [aj(t), bj(t)], [Xmin, Xmax] is the box-constraint of
the problem, Np is the population size, rand(0, 1) is a random
number within [0, 1], k is generated anew in each generation
(i.e. the same value of k is used for the whole population), and
t = 1, 2, . . . , indicates the generations.

4.2. Self-adapting control parameters

The performance of DE algorithmhighly depends on the control
parameters F and CR. Different parameter settings will lead to
different performances. To tackle this problem, some self-adaptive
parameter strategies were proposed. Brest et al. [6] presented a
novel self-adapting parameter mechanism, called jDE, which is
simple yet effective. In jDE, each individual Xi has two independent
control parameters Fi and CRi, which are updated as follows.

Fi(t + 1) =


Fl + rand1 · Fu, if rand2 < τ1
Fi(t), otherwise , (8)

CRi(t + 1) =


rand3, if rand4 < τ2
CRi(t), otherwise , (9)

where randj, j ∈ {1, 2, 3, 4} are uniform random values ∈ [0, 1].
τ1 and τ2 represent probabilities to adjust factors F and CR,
respectively. In jDE, τ1 = τ2 = 0.1, Fl = 0.1 and Fu = 0.9. The new
parameters F and CR take random values in [0.1, 1.0] and [0, 1],
respectively.

The boundaries Fl and Fu is an empirical study in [6]. Their
settings affect the performance of searching good solutions. In
our experiments, the range of F is sensitive to solve large-scale
problems. When changing the values of Fl and Fu, the performance
of GODE is highly effected. In our studies, F ∈ [0.2, 0.4] is a good
setting. Therefore, we peak Fl = Fu = 0.2, and those values are
used in this paper.



H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73 65
According to the studies of [23,34], the crossover probability
CR ∈ [0.8, 1.0] is a good choice. Therefore, we modify the CR
updating model (Eq. (9)) as follows.

CRi(t + 1) =


CRl + rand3 · CRu, if rand4 < τ2
CRi(t), otherwise , (10)

where CRl and CRu are set to 0.8 and 0.2, respectively, in this paper.
The new CR takes a value from [0.8, 1.0] in a randommanner.

4.3. The framework of GOjDE

Algorithm 1: The GOjDE Algorithm (CPU Implementation)
1 Initialization;
2 while FEs ≤ MAX_FEs do
3 if rand(0, 1) ≤ po then

/* Conduct GOBL */
4 Update the dynamic interval boundaries [aj(t), bj(t)] in P

according to (6);
5 k = rand(0, 1);
6 for i = 1 to Np do
7 Generate the opposite individual GOPi of the ith

individual Pi according to (5);
8 Calculate the fitness value of GOPi;
9 FEs + +;

10 end
11 Select Np fittest individuals from {P,GOP} as new current

population P;
12 end
13 else

/* Execute the classical DE (rand/1/exp ) */
14 for i = 1 to Np do
15 Calculate the new parameters Fi and CRi according to

equations (8) and (10), respectively;
16 Generate the mutant vector Vi according to (1);
17 Generate the trail vector Ui according to (2);
18 Calculate the fitness value of Ui;
19 FEs + +;
20 Select a fitter one between Pi and Ui as the new Pi;
21 end
22 end
23 end

The framework of GOjDE on CPU is shown in Algorithm 1,
where P is the current population, GOP is the opposite population
after using GOBL, Pi is the ith individual in P,GOPi is the opposite
individual of Pi, k is a randomnumber in [0, 1], po is the probability
of GOBL, [aj(t), bj(t)] is the intervals of current population, FEs is
the number of fitness evaluations, and MAX_FEs is the maximum
number of evaluations. If the probability of GOBL is satisfied,
then execute the GOBL strategy; otherwise execute DE. In DE, the
control parameters F and CR are self-adjusting every generation.

5. Implementation of parallel GOjDE on GPU

In this paper, the parallel GOjDE is implemented on GPU
featuring single instruction multiple threads (SIMT) execution
(please see Chapter 4 in [26]). SIMT is used to manage hundreds
of thread running several different programs. The multiprocessor
maps each thread to one scalar processor core, and each scalar
thread executes independently with its own instruction address
and register state [26]. In GOjDE, the evolutionary operations on
each individual are independent. Therefore, we can use a thread to
execute the operations of an individual in a parallelmanner. GOjDE
consists of two parts: the original DE algorithm (including self-
adapting control parameters) and generalized opposition-based
jumping. For the first part, we use a kernel function DE_Kernel()
to implement all operations of DE including the updating of
the control parameters F and CR. The second part contains
three operations: updating boundaries (see Eq. (6)), opposition
(see Eq. (5)) and elite selection (see line 11 in Algorithm 1).
We also use three kernel functions, Update_Boundaries_Kernel(),
Opposition_Kernel() and Selection_Kernel(), to implement these
operations, respectively.

5.1. DE_Kernel() function

The DE algorithm used in GOjDE contains five operations:
parameter updating (see line 15 in Algorithm 1), mutation (see
line 16 in Algorithm 1), crossover (see line 17 in Algorithm 1),
fitness evaluation (see line 18 in Algorithm 1) and selection (see
line 20 in Algorithm 1). These operations are independent for each
individual. So, we allocateNp threads to each individual and assure
that each thread can execute all the operations of an individual.

5.2. Update_Boundaries_Kernel() function

The operation of updating boundaries (see line 11 in Algo-
rithm 1) aims to find the minimum and maximum values of each
dimension in the current search space. For each dimension, the
operation of searching its boundaries is independent. Therefore,
we can execute this operation in parallel. When the dimension is
D, we need to allocate D threads to complete this task. In CUDA
architecture, the maximum number of threads per block is 512.
For D = 1000, we use two blocks to implement this kernel, and
each block contains 500 threads.

5.3. Opposition_Kernel() function

The operation of opposition is independent for each individual.
Therefore, we use Np threads to generate all opposite individuals
of current population in parallel. The fitness evaluation of each
opposite individual is executed on its corresponding thread. This
happens after generate opposite individuals.

5.4. Selection_Kernel() function

This kernel function differs from the former three operations,
because the selection is not independent for each individual.
The elite selection is to select Np fittest individuals from 2 × Np
individuals. To complete this task in parallel, we allocate a thread
for each individual in current population P andopposite population
GOP (2 × Np individuals). For each individual, we compare it with
other 2×Np−1 individuals in {P∪GOP} and calculate its rank value.
If the final rank value of an individual is less than Np (it means that
this individual is one of theNp fittest individuals in {P∪GOP}), then
we select it as the new member entering to the next generation.

Themain steps of GOjDE on GPU (GPU_GOjDE) are presented in
Algorithm 2, where Iter is the number of iterations, and MAX_Iter
is the maximum number of iterations. The relationship between
MAX_FEs and MAX_Iter is MAX_Iter =

MAX_FEs
Np

.

6. Experimental studies

6.1. Experimental setup

There are 19 high-dimensional global optimization functions
used for the following experiments. Functions F1 − F6 were
chosen from the first six functions provided by CEC-2008 Special
Session and Competition on Large Scale Global Optimization [36].
Functions F7 − F19 were proposed for the 2010 special issue
of Soft Computing on scalability of evolutionary algorithms and
other metaheuristics for large scale continuous optimization
problems [17]. In this paper, we focus on investigating the
optimization performance of GODE on problems with dimensions



66 H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73
Algorithm 2: The GOjDE Implemented on GPU (GPU_GOjDE)
1 Initialization;
2 while Iter ≤ MAX_Iter do
3 if rand(0, 1) ≤ po then

/* Conduct GOBL generation jumping */
4 Update_Boundaries_Kernel();

/* The fitness evaluation of each opposite
individual is conducted in
Opposition_Kernel() */

5 Opposition_Kernel();
6 Selection_Kernel();
7 end
8 else

/* Execute DE */
/* The fitness evaluation of each individual

is conducted in DE_Kernel() */
9 DE_Kernel();

10 end
11 Iter + +;
12 end

100, 200, 500 and 1000. The descriptions of these benchmark
functions are listed in Table 1. For the specific definitions of these
functions, please see [17].

The computational platform is as follows.

• System: Windows XP (SP2)
• CPU: Intel(R) Core(TM)2 Quad Q8200 (2.33 GHz)
• RAM: 2G
• GPU: NVIDIA GeForce GTX 285
• Compiler: Microsoft VS 2008.

To study the performance of GOjDE, three series of experiments
are conducted as follows.

• GOjDE is compared with DE, GODE [43], CHC (Crossgener-
ational elitist selection, Heterogeneous recombination, and
Cataclysmic mutation) [11] and G-CMA-ES (Restart Covariant
Matrix Evolutionary Strategy) [2]. This experiment aims to in-
vestigate how the self-adapting parameter strategy and GOBL
are helpful to improve the quality of solutions.

• The second experiment compares the computational time of
GOjDE onCPU andGPU.Moreover,we also observe the obtained
speedup. This experiment focuses on investigating whether
GPU is helpful to reduce the computational time.

• The third experiment investigates the effects of population size
on the speedup of GOjDE.

6.2. Comparison of GOjDE with DE, CHC, G-CMA-ES and GODE

In this section, we compare the performance of DE, CHC,
G-CMA-ES, GODE and GOjDE on the test suite with D = 100, 200,
500 and 1000. This comparison aims to check whether the embed-
ded strategies (self-adapting control parameter andGOBL) are ben-
eficial for improving the quality of solutions.

To have a fair competition, the same settings are used for the
common parameters. For DE, GODE and GOjDE, the population
size (Np) is fixed to 128. (This setting is different from [43].)
The control parameters F and CR in DE and GODE are set to
0.5 and 0.9, respectively. For GOjDE, F and CR are self-adjusted
during the evolution. The probability of GOBL po is set to 0.05. The
parameter settings of CHC and G-CMA-ES are described in [16].
For all algorithms, the maximum number of fitness evaluations,
MAX_FEs, is set to 5000 × D. Each run stops when the maximum
number of evaluations (orMAX_Iter for GOjDE onGPU) is achieved.
According to the suggestions of [17], all the results below 1E−14
have been approximated to 0.0.
Table 1
The 19 test functions used in the experiments, where X ∈ Rn is the
definition domain, and f (xo) is the minimum value of the function.

Functions Name X f (xo)

F1 Shifted Sphere [−100, 100] −450
F2 Shifted Schwefel 2.21 [−100, 100] −450
F3 Shifted Rosenbrock [−100, 100] 390
F4 Shifted Rastrigin [−5, 5] −330
F5 Shifted Griewank [−600, 600] −180
F6 Shifted Ackley [−32, 32] −140
F7 Shifted Schwefel 2.22 [−10, 10] 0
F8 Shifted Schwefel 1.2 [−65.536, 65.536] 0
F9 Shifted Extended f10 [−100, 100] 0
F10 Shifted Bohacheysky [−15, 15] 0
F11 Shifted Schaffer [−100, 100] 0
F12 Hybrid shifted function [−100, 100] 0
F13 Hybrid shifted function [−100, 100] 0
F14 Hybrid shifted function [−5, 5] 0
F15 Hybrid shifted function [−10, 10] 0
F16 Hybrid shifted function [−100, 100] 0
F17 Hybrid shifted function [−100, 100] 0
F18 Hybrid shifted function [−5, 5] 0
F19 Hybrid shifted function [−10, 10] 0

Tables 2–5 present the mean error values of the above five
algorithms for D = 100, 200, 500 and 1000, respectively (The
results of G-CMA-ES forD = 1000 are not included due to the large
computation time for runs for some functions [17]). Results of CHC
and G-CMA-ES are taken from [17]. The best results among the five
(four for D = 1000) algorithms are shown in bold.

From the results, it can be seen that GOjDE achieves promising
solutions on 11 functions, F1, F5 − F7, F9 − F12, F15, F16 and
F19, while both DE and GODE obtain reasonable results on 9
functions, F1, F5−F7, F10, F12, F15, F16 and F19.When the dimension
increases to 1000, GOjDE, DE and GODE fail to solve F7 and
F15. In our test, the fitness values of these two functions are
larger than the maximum value (10308) that double precision float
number can represent. This problem can be solved by using higher
precision data types, such as ‘‘long double’’ in C/C++. Although
we used ‘‘long double’’ to represent the fitness value, GODE was
implemented in Microsoft VS 2008, which uses the same size of
bytes (8 bytes) to represent ‘‘double’’ and ‘‘long double’’. So, we did
not list the results of these two functions for D = 1000.

GOjDE outperforms DE in all test cases except for F3 and F4.
For F3, DE performs better than GOjDE on D = 100, while GOjDE
achieves better results on D = 200 and 500. For D = 1000, both
DE and GOjDE obtain the same result. Compared to GODE, GOjDE
performs better on all test functions except for F4. On this function,
GOjDE achieves better result than GODE on D = 100, while GODE
outperforms GOjDE for the rest of dimensions. The comparison be-
tween GODE and GOjDE demonstrates that the achieved improve-
ments of GOjDE are due to usage of the introduced self-adapting
parameter strategy.

G-CMA-ES outperforms the other algorithms on three func-
tions, F2, F3 and F8. Especially for F8, only G-CMA-ES achieves
promising solution, while other algorithms fall into local minima.
On function F1, both G-CMA-ES and GOjDE could search the global
optimum. For the rest the 15 function, GOjDE obtains better perfor-
mance than G-CMA-ES. As pointed out in [43], CHC is not suitable
for solving high-dimensional problems. It only obtains promising
result on F1, which is a simple and unimodal function. For the rest
of the functions, the performance of CHC is seriously affected by
the increasing of dimensions.

Fig. 2 shows the convergence curves of DE, GODE and GOjDE
on four selected problems. As seen, GojDE converges faster than
DE and GODE on the four problems. For F1, DE shows faster
convergence speed than GODE, while GODE converges faster than
DE for the rest three problems.



H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73 67
Table 2
Mean error values for D = 100, where the best results are shown in bold.

Functions DE CHC G-CMA-ES GODE GOjDE
Mean Mean Mean Mean Mean

F1 1.99E−11 3.56E−11 0.00E+00 1.04E−10 0.00E+00
F2 1.60E+01 8.58E+01 1.51E−10 1.79E+01 1.42E+01
F3 8.78E+01 4.19E+06 3.88E+00 8.83E+01 1.42E+02
F4 6.28E+01 2.19E+02 2.50E+02 7.82E+01 6.70E+01
F5 1.22E−11 3.83E−03 1.58E−03 6.36E−12 0.00E+00
F6 8.81E−07 4.10E−07 2.12E+01 2.51E−06 0.00E+00
F7 1.82E−06 1.40E−02 4.22E−04 4.67E−06 3.25E−10
F8 4.54E+03 1.69E+03 0.00E+00 4.48E+03 7.92E+00
F9 1.38E+00 5.86E+02 1.02E+02 1.15E+00 0.00E+00
F10 6.96E−11 3.30E+01 1.66E+01 5.83E−11 0.00E+00
F11 1.31E+00 7.32E+01 1.64E+02 1.29E+00 0.00E+00
F12 6.80E−03 1.03E+01 4.17E+02 1.15E−03 3.32E−05
F13 6.87E+01 2.70E+06 4.21E+02 6.87E+01 6.59E+01
F14 1.92E+01 1.66E+02 2.55E+02 1.85E+01 1.79E+01
F15 7.95E−07 8.13E+00 6.30E−01 2.29E−10 0.00E+00
F16 3.46E−03 2.23E+01 8.59E+02 5.22E−04 1.69E−04
F17 2.35E+01 1.47E+05 1.51E+03 2.18E+01 1.94E+01
F18 4.99E−01 7.00E+01 3.07E+02 1.09E−01 5.38E−02
F19 1.38E−08 5.45E+02 2.02E+01 4.34E−09 0.00E+00
Table 3
Mean error values for D = 200, where the best results are shown in bold.

Functions DE CHC G-CMA-ES GODE GOjDE
Mean Mean Mean Mean Mean

F1 3.74E−11 8.34E−01 0.00E+00 3.22E−10 0.00E+00
F2 4.19E+01 1.03E+02 1.16E−09 2.05E+01 1.20E+01
F3 1.87E+02 2.01E+07 8.91E+01 1.88E+02 1.84E+02
F4 1.41E+02 5.40E+02 6.48E+02 1.58E+02 1.75E+02
F5 1.42E−11 8.76E−03 0.00E+00 9.61E−12 0.00E+00
F6 1.07E−06 1.23E+00 2.14E+01 2.61E−06 0.00E+00
F7 3.66E−06 2.59E−01 1.17E−01 9.51E−06 5.28E−09
F8 3.36E+04 9.38E+03 0.00E+00 3.02E+04 4.13E+02
F9 2.82E+00 1.19E+03 3.75E+02 3.55E+00 0.00E+00
F10 1.42E−10 7.13E+01 4.43E+01 8.84E−10 0.00E+00
F11 2.78E+00 3.85E+02 8.03E+02 3.54E+00 0.00E+00
F12 2.45E−02 7.44E+01 9.06E+02 3.61E−03 8.70E−05
F13 1.43E+02 5.75E+06 9.43E+02 1.43E+02 1.41E+02
F14 8.23E+01 4.29E+02 6.09E+02 7.87E+01 6.43E+01
F15 1.94E−06 2.14E+01 1.75E+00 4.80E−09 0.00E+00
F16 7.37E−03 1.60E+02 1.92E+03 1.27E−03 3.26E−04
F17 4.61E+01 1.75E+05 3.36E+03 4.53E+01 4.43E+01
F18 1.16E+00 2.12E+02 6.89E+02 6.32E−01 8.21E−02
F19 6.53E−08 2.06E+03 7.52E+02 2.20E−08 0.00E+00
Table 4
Mean error values for D = 500, where the best results are shown in bold.

Functions DE CHC G-CMA-ES GODE GOjDE
Mean Mean Mean Mean Mean

F1 1.13E−10 2.84E−12 0.00E+00 6.66E−10 0.00E+00
F2 8.43E+01 1.29E+02 3.48E−04 4.95E+01 3.46E+01
F3 4.83E+02 1.14E+06 3.58E+02 4.83E+02 4.78E+02
F4 3.99E+02 1.91E+03 2.10E+03 4.67E+02 4.68E+02
F5 1.95E−11 6.98E−03 2.96E−04 1.28E−11 0.00E+00
F6 1.08E−06 5.16E+00 2.15E+01 2.92E−07 0.00E+00
F7 9.76E−06 1.27E−01 7.21E+153 2.31E−05 2.96E−08
F8 1.78E+05 7.22E+04 2.36E−06 1.52E+05 2.00E+04
F9 7.16E+00 3.00E+03 1.74E+03 3.26E+00 0.00E+00
F10 4.43E−10 1.86E+02 1.27E+02 2.41E−10 0.00E+00
F11 7.32E+00 1.81E+03 4.16E+03 3.52E+00 0.00E+00
F12 8.45E−02 4.48E+02 2.58E+03 6.26E−03 3.12E−04
F13 3.66E+02 3.22E+07 2.87E+03 3.67E+02 3.65E+02
F14 2.80E+02 1.46E+03 1.95E+03 2.37E+02 2.10E+02
F15 4.52E−06 6.01E+01 2.82E+262 1.41E−08 7.26E−10
F16 1.92E−01 9.55E+02 5.45E+03 3.21E−02 7.69E−04
F17 1.23E+02 8.40E+05 9.59E+03 1.22E+02 1.19E+02
F18 3.49E+00 7.32E+02 2.05E+03 1.24E+00 3.83E−01
F19 2.64E−07 1.76E+03 2.44E+06 5.91E−07 0.00E+00



68 H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73
Table 5
Mean error values for D = 1000, where the best results are shown in bold.

Functions DE CHC GODE GOjDE
Mean Mean Mean Mean

F1 2.51E−10 1.36E−11 1.53E−09 0.00E+00
F2 1.11E+02 1.44E+02 8.77E+01 7.06E+01
F3 9.78E+02 8.75E+03 9.78E+02 9.78E+02
F4 8.08E+02 4.76E+03 9.37E+02 9.40E+02
F5 2.49E−11 7.02E−03 1.34E−11 0.00E+00
F6 1.18E−06 1.38E+01 6.72E−07 0.00E+00
F7 INF 3.52E−01 INF INF
F8 5.93E+05 3.11E+05 4.41E+05 3.71E+05
F9 1.45E+01 6.11E+03 1.24E+01 0.00E+00
F10 5.01E−09 3.83E+02 2.65E−09 0.00E+00
F11 1.46E+01 4.82E+03 1.15E+01 0.00E+00
F12 1.82E−01 1.05E+03 3.06E−02 7.16E−04
F13 7.38E+02 6.66E+07 7.38E+02 7.31E+02
F14 4.09E+02 3.62E+03 3.86E+02 3.61E+02
F15 INF 8.37E+01 INF INF
F16 3.75E−01 2.32E+03 1.21E−01 1.40E−03
F17 2.51E+02 2.04E+07 2.49E+02 2.42E+02
F18 7.49E+00 1.72E+03 3.52E+00 1.37E+00
F19 8.57E−07 4.20E+03 6.49E−07 0.00E+00
Non-parametric tests can be used for comparing algorithms
whose results represent mean values for each problem, in spite
of the inexistence of relationships among them. It is encouraged
to use non-parametric tests to analyze the results obtained by
evolutionary algorithms for continuous optimization problems in
multiple problem analysis [12,13]. In this section, we conduct
Friedman and Wilcoxon test to compare the performance of
multiple algorithms on the test suite.

Table 6 presents the average rankings of GOjDE, GODE, DE, CHC,
and G-CMA-ES for D = 100, 200, 500 and 1000, respectively. The
computation of the results is used by the software MULTIPLETEST
package (provided on the website: http://sci2s.ugr.es/sicidm). For
each dimension, the performance of the five algorithms (four for
D = 1000) can be sorted by the average rankings into the following
order: GOjDE, GODE, DE, G-CMA-ES, and CHC. It means that GOjDE
and CHC are the best and worst ones among the five algorithms,
respectively.

Table 7 shows the p-values of applyingWilcoxon’s test between
GOjDE and other four algorithms for D = 100, 200, 500 and 1000.
The computation of the results is used by SPSS Statistics software.
In this paper, we only check the significance at a level of 0.05. The
p-values below 0.05 are shown in bold. From the results, it can
be seen that GOjDE is significantly better than GODE, DE, CHC and
G-CMA-ES on each dimension.
(a) F1 . (b) F10 .

(c) F18 . (d) F19 .

Fig. 2. The evolutionary processes of DE, GODE and GOjDE on four selected problems.

http://sci2s.ugr.es/sicidm


H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73 69
Table 6
Average rankings achieved by Friedman’s test.

Algorithms D = 100 D = 200 D = 500 D = 1000

GOjDE 4.66 4.68 4.71 3.76
GODE 3.34 3.29 3.45 2.79
DE 3.13 3.18 3.02 2.15
G-CMA-ES 2.24 2.37 2.08 N/A
CHC 1.63 1.47 1.74 1.29

Table 7
Wilcoxon’s test between GOjDE and other algorithms, where the p-values below
are shown in bold.

GOjDE vs. D = 100 D = 200 D = 500 D =

1000

DE 1.58E−02 1.94E−03 1.70E−03 6.13E−03
CHC 1.32E−04 1.32E−04 1.32E−04 3.60E−03
G-CMA-ES 3.78E−03 4.85E−03 1.74E−02 N/A
GODE 1.94E−03 1.94E−03 7.24E−04 2.28E−03

Table 8
Comparison ofGOjDEwithGaDE and SOUPDE forD = 200,
where the best results are shown in bold.

Functions GaDE SOUPDE GOjDE
Mean Mean Mean

F1 0.00E+00 0.00E+00 0.00E+00
F2 5.76E+01 2.33E+01 1.33E+01
F3 1.61E+01 1.71E+02 1.89E+02
F4 0.00E+00 2.27E−13 9.95E−01
F5 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 6.44E−14 1.04E−14
F7 0.00E+00 7.46E−14 0.00E+00
F8 3.02E+00 2.46E+03 7.70E+02
F9 4.53E−09 1.51E−05 0.00E+00
F10 4.20E−02 0.00E+00 0.00E+00
F11 1.85E−07 1.43E−05 1.74E−08
F12 4.92E−14 0.00E+00 3.03E−04
F13 1.24E+02 1.32E+02 1.16E+02
F14 2.87E−12 2.27E−13 1.42E−12
F15 0.00E+00 5.79E−14 0.00E+00
F16 1.58E−12 0.00E+00 1.71E−13
F17 2.45E+01 3.30E+01 4.91E+01
F18 2.53E−08 0.00E+00 3.95E−12
F19 0.00E+00 1.91E−14 0.00E+00
w/t/l 8/5/6 9/3/7 –

6.3. Comparison of GOjDE with other DE variants

To further verify the performance of the proposed approach,
we compare GOjDE with two other DE variants published in
the special issue of Soft Computing high-dimensional continuous
optimization problems. The involved two DE algorithms include
ShuffleOrUpdate Parallel Differential Evolution (SOUPDE) [46] and
Generalized Adaptive Differential Evolution (GaDE) [50].

For the common parameters (such as Np and MAX_FEs), the
same values are used for GOjDE, GaDE and SOUPDE by the
suggestions of [17]. For all the three algorithms, Np = 60 and
MAX_FEs = 5000 · D. For GOjDE, The probability of GOBL po is set
to 0.05. For the other parameters of GaDE and SOUPDE, please
refer [46,50].

The mean error values achieved by GaDE, SOUPDE and GOjDE
are presented in Tables 8 and 9. The comparison results between
GOjDE and other algorithms are summarized as ‘‘w/t/l’’ in the last
row of the table, which means that GOjDE wins in w functions,
ties in t functions and loses in l functions, compared with its
competitors. Results of GaDE are taken from Table 1 in [50]. Results
of SOUPDE are taken from Tables 15 and 17 in [46]. In this paper,
we only present the comparison results forD = 200 andD = 1000.
For D = 100 and D = 500, we can get similar conclusions.
Table 9
Comparison of GOjDE with GaDE and SOUPDE for D =

1000, where the best results are shown in bold.

Functions GaDE SOUPDE GOjDE
Mean Mean Mean

F1 0.00E+00 0.00E+00 0.00E+00
F2 8.93E+01 9.25E+01 6.59E+01
F3 9.45E+02 9.62E+02 9.36E+02
F4 0.00E+00 2.00E−11 7.34E−03
F5 0.00E+00 0.00E+00 0.00E+00
F6 1.66E−14 3.42E−13 1.53E−14
F7 0.00E+00 3.57E−13 INF
F8 1.77E+04 2.12E+05 3.99E+05
F9 0.00E+00 7.39E−05 4.56E−06
F10 4.62E−01 0.00E+00 0.00E+00
F11 0.00E+00 7.44E−05 3.95E−06
F12 3.85E−12 0.00E+00 2.73E−04
F13 7.15E+02 7.26E+02 7.11E+02
F14 8.82E−11 6.37E−12 4.23E−11
F15 0.00E+00 2.69E−13 INF
F16 2.35E−12 0.00E+00 1.91E−12
F17 2.19E+02 2.31E+02 2.57E+02
F18 1.30E−07 1.36E−12 1.24E−07
F19 3.78E−01 9.50E−14 0.00E+00
w/t/l 9/2/6 7/3/7 –

For D = 200, GOjDE outperforms GaDE on 8 functions, while
GaDE achieves better results thanGojDE on 6 functions. For the rest
5 functions, both GOjDE and GaDE can find the global optimum.
SOUPDE performs better than GOjDE on 7 functions, but it achieves
worse results on 9 functions. For the rest 3 functions, both of
them obtain the same results. For D = 1000, GaDE achieves better
results than GOjDE on 6 functions, while GOjDE outperforms
GaDE on 9 functions. They achieve the same results on F1 and F5.
GOjDE performs better than SOUPDE on 7 functions, while SOUPDE
outperforms GOjDE on 7 functions, too. Both of them obtain the
same performance on F1, F5 and F10.

6.4. Comparison of the computational time of GOjDE on CPU and GPU

In this section, we investigate whether GPU can reduce the
computational time of GOjDE. For the parameters of GOjDE, the
same settings are used as described in Section 6.2. For GOjDE on
GPU, Np threads are allocated to each individual. Each run stops
when the maximum number of generations (MAX_Iter =

5000×D
Np

)
is achieved.

Tables 10 and 11 present the computational time and speedup
achieved by GOjDE. As seen, the computational time of GOjDE on
CPU increases dramatically with increasing of dimensions, while
GOjDE on GPU cost small. It demonstrates that GPU can reduce
the computational timeofGOjDE effectively. The obtained speedup
is between 1.15 and 7.84. With the growth of dimensions, the
speedup decreases in most cases. The main reason is that the
number of threads is fixed to 128. When the dimension increases,
the number of parallel individuals in population is fixed. When
the dimension increases to 1000, the obtained 1.15 (for F1) is
not satisfactory. Under this case, the GPU can only save less
computational time. To tackle this problem, we can increase the
number of parallel individuals. The discussion about the effects of
population size on the speedup is covered in Section 6.4.

6.5. Effects of population size on the speedup

In this section, we investigate the effects of population size on
the speedup of GOjDE. In the implementation of GOjDE on GPU,
the operations of each individual are executed by a thread. Np
individuals will need to allocate Np threads. Larger population size
will allocate more threads. In general, more threads can obtain



70 H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73
Table 10
Comparison of the computational time (in seconds) of GOjDE on CPU andGPU forD = 100 andD = 200.

Functions D = 100 D = 200
CPU time GPU time Speedup CPU time GPU time Speedup

F1 2.83 1.36 2.08 7.64 4.64 1.65
F2 4.11 1.34 3.07 12.56 4.50 2.79
F3 17.25 2.20 7.84 64.20 8.67 7.40
F4 9.02 1.54 5.86 31.61 5.63 5.61
F5 10.66 2.00 5.33 38.81 7.14 5.44
F6 8.80 2.36 3.73 31.13 8.41 3.70
F7 4.36 1.43 3.04 13.36 4.51 2.96
F8 2.84 1.38 2.06 7.58 4.61 1.64
F9 15.69 3.31 4.74 58.55 14.41 4.06
F10 7.50 2.94 2.55 26.30 10.83 2.43
F11 13.16 3.78 3.48 49.28 14.23 3.46
F12 6.48 1.84 3.52 21.83 6.36 3.43
F13 15.11 2.70 5.60 56.00 14.69 3.81
F14 11.02 1.98 5.57 39.70 6.86 5.79
F15 5.77 2.14 2.70 19.63 7.69 2.55
F16 9.59 1.89 5.07 34.20 6.53 5.24
F17 15.66 2.31 6.78 58.53 9.14 6.40
F18 14.36 2.08 6.90 53.22 10.01 5.32
F19 7.47 2.16 3.46 29.00 12.58 2.31
Table 11
Comparison of the computational time (in seconds) of GOjDE on CPU and GPU for D = 500 and
D = 1000.

Functions D = 500 D = 1000
CPU time GPU time Speedup CPU time GPU time Speedup

F1 32.59 25.01 1.30 110.72 96.47 1.15
F2 62.16 24.13 2.58 227.08 91.81 2.47
F3 389.02 54.56 7.13 1532.97 223.95 6.84
F4 181.55 32.59 5.57 709.33 129.20 5.49
F5 227.36 40.25 5.65 892.39 159.81 5.58
F6 178.42 47.84 3.73 695.47 190.50 3.65
F7 65.34 22.68 2.88 – – –
F8 31.11 24.08 1.29 105.70 91.11 1.16
F9 350.83 85.23 4.12 1384.30 340.69 4.06
F10 149.02 63.55 2.34 574.25 255.66 2.25
F11 293.45 84.45 3.47 1154.19 337.75 3.42
F12 120.34 47.30 2.54 463.74 171.25 2.71
F13 337.09 74.03 4.55 1328.56 281.08 4.73
F14 232.83 50.52 4.61 911.72 185.39 4.92
F15 100.97 50.10 1.98 – – –
F16 198.38 48.63 4.08 774.66 178.11 4.35
F17 352.34 65.13 5.41 1389.61 245.23 5.67
F18 316.22 53.36 5.93 1247.25 196.74 6.34
F19 146.78 61.09 2.40 638.67 288.96 2.21
higher speedup. In this experiment, we set the population size
Np as 256, 1024, 2048 and 4096, respectively. For each problem
with differentNp, themaximumnumber of generations (MAX_Iter)
is set to 20,000. Each algorithm stops run when the maximum
number of generations is achieved. For other parameters, we
use the same settings as described in Section 6.2. Here, we only
presents the results of problems onD = 200. For other dimensions,
we can get similar conclusions.

Table 12 presents the computational results of GOjDE on CPU
and GPU. When Np varies from 256 to 4196, the computational
effort increases about 16 times because we fix the maximum
number of generations in the experiment. The computational
time of GOjDE on CPU increases about 16 times, while GOjDE on
GPU only increases 2.8 ∼ 7.45 times. With increasing of Np,
more threads are used to execute the operations of GPU_GODE
in parallel and larger speedups are obtained. The maximum
speedup is up to 75. It shows that GPU can effectively reduce the
computational time when utilizing appropriate population size.
Although larger population size could obtain higher speedup, the
growth of speedup is determined by the parallel ability of the
graphics card. The maximum number of the threads allocated to
individuals is limited. When the allocated threads reach to the
maximum limitation, the speedup will be up to the maximum
value.

Storn and Price in [33] have indicated that a reasonable value
for Np could be chosen between 5 · D and 10 · D. To investigate
the effects of Np for the quality of solutions, we compare the mean
error values achieved by GojDE on GPU with different Np. The
comparison results are listed in Table 13. It can be seen that there
is no fixed Np for all test functions. For F2 and F8,Np = 1024 is the
best choice, while Np = 4096 is the best for F3, F13. For the rest 14
functions, the best choice of Np could be chosen between 1024 and
4096.

7. Conclusion

In this paper, we present a new parallel DE algorithm (GOjDE)
based on GPU to solve high-dimensional global optimization
problems. The proposed approach employs self-adapting control
parameters and GOBL strategy to improve the quality of candidate
solutions. Simulation experiments are conducted on 19 recently
proposed high-dimensional benchmark problems with D = 100,



H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73 71
Table 12
Comparison of the computational time (in seconds) and speedup achieved by GOjDE with different population size.

Population size F1 F2
CPU time GPU time Speedup CPU time GPUtime Speedup

Np = 256 38.11 13.34 2.86 62.66 13.31 4.71
Np = 1024 160.95 21.05 7.65 259.94 21.13 12.3
Np = 2048 343.02 32.95 10.41 541.27 32.09 16.87
Np = 4096 741.31 60.59 12.23 1141.58 56.81 20.09

F3 F4

Np = 256 327.7 25.01 13.11 160.59 17.08 9.40
Np = 1024 1323.17 33.63 39.34 652.14 25.36 25.72
Np = 2048 2667.47 45.13 59.11 1325.27 36.86 35.95
Np = 4096 5386.86 71.80 75.03 2704.77 61.38 44.07

F5 F6

Np = 256 196.94 16.28 12.10 156.56 23.63 6.63
Np = 1024 798.11 24.31 32.83 636.00 31.73 20.04
Np = 2048 1614.47 35.83 45.06 1296.00 44.56 29.08
Np = 4096 3288.05 61.17 53.75 2660.83 70.20 37.90

F7 F8

Np = 256 66.82 13.27 5.03 36.99 13.55 2.73
Np = 1024 273.57 20.09 13.62 154.52 21.00 7.36
Np = 2048 529.63 24.17 21.91 340.27 32.00 10.63
Np = 4096 1081.26 37.89 28.54 735.30 57.23 12.85

F9 F10

Np = 256 245.92 14.99 16.41 113.78 30.11 3.78
Np = 1024 1015.47 23.38 43.43 471.81 38.08 12.39
Np = 2048 2060.64 35.22 58.51 971.31 54.44 17.84
Np = 4096 4191.53 63.88 65.62 1996.36 83.25 23.98

F11 F12

Np = 256 202.81 14.61 13.88 110.34 18.28 6.04
Np = 1024 837.58 22.64 37.00 454.11 25.41 17.87
Np = 2048 1707.86 33.86 50.44 931.05 35.33 26.35
Np = 4096 3482.80 60.76 57.32 1927.80 62.13 31.03

F13 F14

Np = 256 285.55 39.81 7.17 202.91 27.03 7.51
Np = 1024 1155.45 47.30 24.43 823.38 35.81 22.99
Np = 2048 2327.25 56.44 41.23 1664.23 45.89 36.27
Np = 4096 4735.14 82.92 57.10 3409.11 72.58 46.97

F15 F16

Np = 256 94.11 24.76 3.80 174.52 18.50 9.43
Np = 1024 388.52 40.89 9.50 709.56 25.51 27.81
Np = 2048 799.25 51.38 15.56 1443.91 35.76 40.38
Np = 4096 1662.73 78.22 21.26 2957.83 61.50 48.09

F17 F18

Np = 256 298.63 36.03 8.29 271.36 23.13 11.73
Np = 1024 1206.91 43.30 27.87 1097.98 30.83 35.61
Np = 2048 2432.19 53.42 45.53 2213.95 40.72 54.37
Np = 4096 4952.06 80.47 61.54 4518.38 65.98 68.48

F19

Np = 256 133.66 33.64 3.97
Np = 1024 549.30 40.78 13.47
Np = 2048 1119.81 51.20 21.87
Np = 4096 2306.03 77.63 29.71
200, 500 and 1000. We can summarize the experimental results as
follows.

• Comparison of GOjDEwith DE, CHC, G-CMA-ES and GODE show
that GOjDE is better than other four algorithms. The embedded
strategies, including self-adapting parameters and GOBL, are
helpful to improve the quality of solutions.

• GPU can effectively help GOjDE to reduce the computational
time. When the population size is fixed, the obtained speedup
tends to decrease with the growth of dimensions.

• Larger population size is helpful to obtain higher speedup.
The main reason is that the number of parallelized individuals
(threads) increases. That is beneficial for solving higher dimen-
sional problems by setting appropriate population size.
It is applicable to useGPU to solve higher dimensional optimiza-

tion problems. This will be investigated in our future work.

Acknowledgments

Wewould like to thank the editor and anonymous reviewers for
their detailed and constructive comments that help us to increase
the quality of this work. We also thank Mr. Feng Zhu for his
implementation. This work was supported by the National Natural
Science Foundation of China (Nos 61070008, and 60871021),



72 H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73
Table 13
Mean error values achieved by GOjDE on GPU with different population
size, where the best results are shown in bold.

Functions Np = 256 Np = 1024 Np = 2048 Np = 4096
Mean Mean Mean Mean

F1 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F2 4.55E+00 2.89E+00 2.91E+00 3.12E+00
F3 1.40E+02 1.23E+02 1.18E+02 1.17E+02
F4 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F5 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F6 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F7 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F8 1.57E+00 6.94E−01 1.07E+00 1.23E+01
F9 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F10 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F11 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F12 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F13 1.10E+02 1.01E+02 9.86E+01 9.71E+01
F14 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F15 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F16 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F17 1.38E+01 6.82E+00 3.37E+00 2.54E+00
F18 0.00E+00 0.00E+00 0.00E+00 0.00E+00
F19 0.00E+00 0.00E+00 0.00E+00 0.00E+00

the Science and Technology Plan Projects of Jiangxi Provincial
Education Department (No. GJJ12641), and the Jiangxi Province
Soft Science Research Programs (No. 2010ZDR00100).

References

[1] A. Akoglu, G.M. Striemer, Scalable and highly parallel implementation of
Smith–Waterman on graphics processing unit using CUDA, Cluster Comput.
12 (2009) 341–352.

[2] A. Auger, N. Hansen, A restart CMA evolution strategy with increasing popula-
tion size, in: Proceedings of IEEE Congress on Evolutionary Computation, 2005,
pp. 1769–1776.

[3] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Publisher,
New York, 1996.

[4] W. Banzhaf, S. Harding, W.B. Langdon, G. Wilson, Accelerating genetic
programming through graphics processing units, in: Genetic Programming
Theory and Practice, vol. VI, 2009, pp. 1–19.

[5] R.E. Bellman, Dynamic Programming, Princeton University Press, 1957.
[6] J. Brest, S. Greiner, G. Bošković, M. Mernik, V. Žumer, Self-adapting control

parameters in differential evolution: a comparative study on numerical
benchmark problems, IEEE Trans. Evol. Comput. 10 (6) (2006) 646–657.

[7] J. Brest, M.S. Maučec, Self-adaptive differential evolution algorithm using
population size reduction and three strategies, Soft Comput. 15 (11) (2011)
2157–2174.

[8] J. Brest, A. Zamuda, B. Bošković,M.S.Maučec, V. Žumer, High-dimensional real-
parameter optimization using self-adaptive differential evolution algorithm
with population size reduction, in: Proceedings of IEEE Congress on
Evolutionary Computation, 2008, pp. 2032–2039.

[9] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimization by a colony
of cooperating agents, IEEE Trans. Syst. Man Cybern. Part B 26 (1996) 29–41.

[10] A. Duarte, R. Marti, An adaptive memory procedure for continuous optimiza-
tion, in: Proceedings of International Conference on Intelligent System Design
and Applications, 2009, pp. 1085–1089.

[11] L.J. Eshelman, J.D. Schaffer, Real-coded genetic algorithm and interval
schemata, Found. Genet. Algorithms 2 (1993) 187–202.

[12] S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests
for multiple comparisons in the design of experiments in computational
intelligence and datamining: experimental analysis of power, Inform. Sci. 180
(2010) 2044–2064.

[13] S. García, D. Molina, M. Lozano, F. Herrera, A study on the use of non-
parametric tests for analyzing the evolutionary algorithms’ behaviour: a
case study on the CEC’2005 special session on real parameter optimization,
J. Heuristics 15 (2009) 617–644.

[14] C. Garcí-Martínez, M. Lozano, Continuous variable neighbourhood search
algorithm based on evolutionarymetaheuristic components: a scalability test,
in: Proceedings of International Conference on Intelligent System Design and
Applications, 2009, pp. 1074–1079.

[15] C. García-Martínez, F.J. Rodríguez, M. Lozano, Role differentiation and
malleable mating for differential evolution: an analysis on large scale
optimisation, Soft Comput. 15 (11) (2011) 2109–2126.

[16] F. Herrera, M. Lozano, D. Molina, Components and parameters of DE, real-
coded CHC, and G-CMAES, Technical Report, University of Granada, Spain,
2010.

[17] F. Herrera, M. Lozano, D. Molinam, Test suite for the special issue of Soft
Computing on scalability of evolutionary algorithms and other metaheuristics
for large scale continuous optimization problems, Technical Report, University
of Granada, Spain, 2010. http://sci2s.ugr.es/eamhco/#LSCOP-special-issue-
SOCO.

[18] S. Hsieh, T. Sun, C. Liu, S. Tsai, Solving large scale global optimization using
improved particle swarm optimizer, in: Proceedings of IEEE Congress on
Evolutionary Computation, 2008, pp. 1777–1784.

[19] T. Hu, S. Harding, W. Banzhaf, Variable population size and evolution
acceleration: a case study with a parallel evolutionary algorithm, Genet.
Program. Evolvable Mach. 11 (2010) 205–225.

[20] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of IEEE
International Conference on Neural Networks, 1995, pp. 1942–1948.

[21] S. Kirkpatrick, C.D. Gelatt, P.M. Vecchi, Optimization by simulated annealing,
Science 220 (1983) 671–680.

[22] P. Larranaga, J.A. Lozano, Estimation of Distribution Algorithms—A New Tool
for Evolutionary Computation, Kluwer Academic Publishers, Boston, 2001.

[23] J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm, Soft
Comput. 9 (6) (2005) 448–462.

[24] D.Molina,M. Lozano, F. Herrera,Memetic algorithmwith local search chaining
for continuous optimization problems: a scalability test, in: Proceedings of
International Conference on Intelligent SystemDesign and Applications, 2009,
pp. 1068–1073.

[25] S. Muelas, A. LaTorre, J. Peña, A memetic differential evolution algorithm
for continuous optimization, in: Proceedings of International Conference on
Intelligent System Design and Applications, 2009, pp. 1080–1084.

[26] nVidia, NVIDIA CUDA programming guide version 2.2.1, 2009.
[27] K. Price, R. Storn, J. Lampinen, Differential Evolution: A Practical Approach to

Global Optimization, first ed., Springer-Verlag, New York, 2005.
[28] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differential

evolution algorithms, in: Proceedings of IEEE Congress on Evolutionary
Computation, 2006, pp. 2010–2017.

[29] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differential
evolution for optimization of noisy problems, in: Proceedings of IEEE Congress
on Evolutionary Computation, 2006, pp. 1865–1872.

[30] S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama, Opposition-based differential
evolution, IEEE Trans. Evol. Comput. 12 (1) (2008) 64–79.

[31] S. Rahnamayan, G.G. Wang, Solving large scale optimization problems by
opposition-based differential evolution (ODE), Trans. Comput. 7 (10) (2008)
1792–1804.

[32] D. Robilliard, V. Marion-Poty, C. Fonlupt, Genetic programming on graphics
processing units, Genet. Program. Evolvable Mach. 10 (2009) 447–471.

[33] R. Storn, K.V. Price, Differential evolution: a simple and efficient adaptive
scheme for global optimization over continuous spaces, ICSI, USA, Tech. Rep.
TR-95-012, 1995.

[34] R. Storn, K. Price, Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces, J. Global Optim. 11 (1997)
341–359.

[35] K. Tang, X. Li, S.N. Suganthan, Z. Yang, T. Weise, Benchmark functions for the
CEC’2010 special session and competition on large-scale global optimization,
Technical Report, Nature Inspired Computation and Applications Laboratory,
USTC, China, 2010. http://nical.ustc.edu.cn/cec10ss.php.

[36] K. Tang, X. Yao, P.N. Suganthan, C. Macnish, Y. Chen, C. Chen, Z. Yang,
Benchmark functions for the CEC’2008 special session and competition
on high-dimensional real-parameter optimization, Technical Report, Nature
Inspired Computation and Applications Laboratory, USTC, China, 2007.

[37] H.R. Tizhoosh, Opposition-based learning: a new scheme for machine
intelligence, in: Proceedings of International Conference on Computational
Intelligence for Modeling Control and Automation, 2005, pp. 695–701.

[38] L. Tseng, C. Chen,Multiple trajectory search for large scale global optimization,
in: Proceedings of IEEE Congress on Evolutionary Computation, 2008,
pp. 3057–3064.

[39] T. Tušar, B. Filipič, Differential evolution versus genetic algorithms in
multiobjective optimization, in: Proceedings of Evolutionary Multi-Criterion
Optimization, 2007, pp. 257–271.

[40] L.P. Veronese, R.A. Krohling, Differential evolution algorithm on the GPU with
C-CUDA, in: Proceedings of IEEE Congress on Evolutionary Computation, 2010,
pp. 1–7.

[41] J. Vesterstrom, R. Thomsen, A comparative study of differential evolution,
particle swarm optimization, and evolutionary algorithms on numerical
benchmark problems, in: Proceedings of IEEE Congress on Evolutionary
Computation, 2004, pp. 1980–1987.

[42] H. Wang, Y. Liu, S.Y. Zeng, H. Li, C.H. Li, Opposition-based particle swarm
algorithm with Cauchy mutation, in: Proceedings of IEEE Congress on
Evolutionary Computation, 2007, pp. 4750–4756.

[43] H. Wang, Z.J. Wu, S. Rahnamayan, Enhanced opposition-based differential
evolution for solving high-dimensional continuous optimization problems,
Soft Comput. 15 (11) (2011) 2127–2140.

[44] H. Wang, Z.J. Wu, S. Rahnamayan, L.S. Kang, A scalability test for acceler-
ated DE using generalized opposition-based learning, in: Proceedings of In-
ternational Conference on Intelligent System Design and Applications, 2009,
pp. 1090–1095.

[45] H. Wang, Z.J. Wu, S. Rahnamayan, Y. Liu, M. Ventresca, Enhancing particle
swarm optimization using generalized opposition-based learning, Inform. Sci.
181 (20) (2011) 4699–4714.

[46] M. Weber, F. Neri, V. Tirronen, Shuffle or update parallel differential evolution
for large scale optimization, Soft Comput. 15 (11) (2011) 2089–2107.

[47] M.L. Wong, Parallel multi-objective evolutionary algorithms on graphics
processing units, in: Proceedings of the 11th Annual Conference Companion
on Genetic and Evolutionary Computation Conference, 2009, pp. 2515–2522.

[48] M.L. Wong, T.T. Wong, Parallel hybrid genetic algorithms on Consumer-
Level graphics hardware, in: Proceedings of IEEE Congress on Evolutionary
Computation, 2006, pp. 2973–2980.

http://sci2s.ugr.es/eamhco/#LSCOP-special-issue-SOCO
http://sci2s.ugr.es/eamhco/#LSCOP-special-issue-SOCO
http://sci2s.ugr.es/eamhco/#LSCOP-special-issue-SOCO
http://nical.ustc.edu.cn/cec10ss.php


H. Wang et al. / J. Parallel Distrib. Comput. 73 (2013) 62–73 73
[49] Z. Yang, K. Tang, X. Yao, Multilevel cooperative coevolution for large scale
optimization, in: Proceedings of IEEE Congress on Evolutionary Computation,
2008, pp. 1663–1670.

[50] Z. Yang, K. Tang, X. Yao, Scalability of generalized adaptive differential
evolution for large-scale continuous optimization, Soft Comput. 15 (11) (2011)
2141–2155.

[51] J.Q. Zhang, A.C. Sanderson, JADE: adaptive differential evolution with optional
external archive, IEEE Trans. Evol. Comput. 13 (5) (2009) 945–958.

[52] S. Zhao, J. Liang, P.N. Suganthan, M.F. Tasgetiren, Dynamic multi-swarm
particle swarm optimizer with local search for large scale global optimization,
in: Proceedings of IEEE Congress on Evolutionary Computation, 2008,
pp. 3846–3853.

[53] S.Z. Zhao, P.N. Suganthan, S. Das, Self-adaptive differential evolution with
multi-trajectory search for large scale optimization, Soft Comput. 15 (11)
(2011) 2175–2185.

[54] H. Zhou, K.L. Lange, M.A. Suchard, Graphical processing units and high-
dimensional optimization. arXiv:1003.3272v1, 2009.

[55] W. Zhu, Massively parallel differential evolution—pattern search optimization
with graphics hardware acceleration: an investigation on bound constrained
optimization problems, J. Global Optim. 50 (3) (2011) 417–437.

Dr. Hui Wang received his B.Sc. and M.Sc. degrees in
computer science from China University of Geosciences in
2005 and 2008. In 2011, he received his Ph.D. degree in
computational intelligence fromWuhanUniversity, China.
Now, he is a lecture in Nanchang Institute of Technol-
ogy, China. His research interests include evolutionary
computation, large-scale global optimization, and parallel
computing. He has published more than 30 international
journal/conference papers. He serves as a reviewer for
more than ten international journals.
Dr. Shahryar Rahnamayan received his B.Sc. and M.Sc.
degrees both with honors in software engineering. In
2007, he received his Ph.D. degree in the field of
evolutionary computation from University of Waterloo
(UW), Canada. Since August 2007, he has been a chief
research manager at OMISA (Omni-Modality Intelligent
Segmentation Assistant) Inc. Before joining the faculty
of engineering and applied science, University of Ontario
Institute of Technology (UOIT), as a faculty member, he
was a postdoctoral fellow at Simon Fraser University
(SFU) in Canada. His research includes Metaheuristics,

evolutionary computation, large-scale optimizations, image processing, and
computer vision. He is a reviewer for more than fifteen international journals.

Dr. Zhijian Wu received his B.Sc. degree in mathematics
from Jiangxi University in 2005, M.Sc. degree in mathe-
matics fromWuhan University in 1988 and Ph.D.degree in
computer science from Wuhan University in 2004. From
2004, he has been a professor atWuhan University. His re-
search interests include evolutionary computation, large-
scale global optimization, parallel computing and inverse
problem. He has published more than 70 international
journal/conference papers.

http://arxiv.org/1003.3272v1

	Parallel differential evolution with self-adapting control parameters and generalized opposition-based learning for solving high-dimensional optimization problems
	Introduction
	Background review
	Differential evolution
	Computing based on GPU

	Overview of high-dimensional global optimization
	DE with self-adapting control parameters and generalized opposition-based learning (GOjDE)
	Generalized opposition-based learning
	Self-adapting control parameters
	The framework of GOjDE

	Implementation of parallel GOjDE on GPU
	DE_Kernel() function
	Update_Boundaries_Kernel() function
	Opposition_Kernel() function
	Selection_Kernel() function

	Experimental studies
	Experimental setup
	Comparison of GOjDE with DE, CHC, G-CMA-ES and GODE
	Comparison of GOjDE with other DE variants
	Comparison of the computational time of GOjDE on CPU and GPU
	Effects of population size on the speedup

	Conclusion
	Acknowledgments
	References


